Adaptive Ridge Regression for Rare Variant Detection
نویسندگان
چکیده
منابع مشابه
Adaptive Ridge Regression for Rare Variant Detection
It is widely believed that both common and rare variants contribute to the risks of common diseases or complex traits and the cumulative effects of multiple rare variants can explain a significant proportion of trait variances. Advances in high-throughput DNA sequencing technologies allow us to genotype rare causal variants and investigate the effects of such rare variants on complex traits. We...
متن کاملFirth logistic regression for rare variant association tests
In association tests of sites with low minor allele frequency or count, it is known that single-variant tests are impractical to use because the results from which will be either underpowered or unreliable. Joint analyses by pooling or “collapsing” multiple variants based on annotated gene group information are thus more preferred in rare variant association tests. However, the issue remains in...
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملEstimating process capability indices using ridge regression
Process capability indices show the ability of a process to produce products according to the pre-specified requirements. Since final quality characteristics of a product are usually interrelated to its previous amounts in earlier workstations, one need to model and consider the relationship among them to assess the process ca-pability properly. Hence, conducting process capability analysis in ...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2012
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0044173